Treatment of congenital syndactyly

F Fitoussi, M Lehanneur
Hôpital Trouseau, Paris
Plan

• Generality
 • Classification
 • Epidemiology

• Indication and timing of surgery

• Principle of surgery
 • Patient’s setup
 • Commissure reconstruction
 • Digital separation
 • Resurfacing
 • Paronychial reconstruction
 • Post-op care

• Specific situations

• Complications

• Conclusion

→ Exclude from this presentation:
 • Symbrachydactyly
 • Amniotic band syndrome
Swanson / International Federation of Societies for Hand Surgery Classification - 1983

<table>
<thead>
<tr>
<th>Main Category</th>
<th>Subcategory</th>
<th>Diagnosis (Example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Failure of formation (arrest)</td>
<td>Transverse longitudinal</td>
<td>Radial club</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleft hand (typical/atypical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phocomelia</td>
</tr>
<tr>
<td>II. Failure of differentiation (separation)</td>
<td>Soft tissue</td>
<td>Arthrogryposis</td>
</tr>
<tr>
<td></td>
<td>Skeletal</td>
<td>Cutaneous syndactyly</td>
</tr>
<tr>
<td></td>
<td>Tumorous</td>
<td>Camptodactyly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radioulnar synostosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Osseous syndactyly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinodactyly</td>
</tr>
<tr>
<td>III. Duplication</td>
<td>—</td>
<td>Mirror hand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polydactyly</td>
</tr>
<tr>
<td>IV. Overgrowth (gigantism)</td>
<td>—</td>
<td>Hemihypertrophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macroductyly</td>
</tr>
<tr>
<td>V. Undergrowth (hypoplasia)</td>
<td>—</td>
<td>Brachysyndactyly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brachydactyly</td>
</tr>
<tr>
<td>VI. Constriction band syndrome</td>
<td>Focal</td>
<td>Constriction band</td>
</tr>
<tr>
<td></td>
<td>Amputation</td>
<td>Acrosyndactyly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intrauterine amputation</td>
</tr>
<tr>
<td>VII. Generalized</td>
<td>—</td>
<td>Achondroplasia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marfan's syndrome</td>
</tr>
</tbody>
</table>

Oberg-Manske-Tonkin classification - 2013

1) MALFORMATIONS

<table>
<thead>
<tr>
<th>a. Défauts de formation/différenciation axial de l'ensemble du membre supérieur</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. axe proximo-distal</td>
</tr>
<tr>
<td>* brachymélie avec brachydactylie</td>
</tr>
<tr>
<td>* symbrachydactylie</td>
</tr>
<tr>
<td>* déficience transverse: amélie,</td>
</tr>
<tr>
<td>pseudarthrose claviculaire,</td>
</tr>
<tr>
<td>allongement/raccourcissement au-</td>
</tr>
<tr>
<td>dessus/au-dessous du coude, polignet,</td>
</tr>
<tr>
<td>1ère/2è rangée du carpe, metacarpe,</td>
</tr>
<tr>
<td>phalange proximale/intermédiaire/distale</td>
</tr>
<tr>
<td>* déficience intersegmentaire: phocomélie (totale/proximale/distale)</td>
</tr>
</tbody>
</table>

2) DEFORMATIONS

<table>
<thead>
<tr>
<th>a. Hypertrophie</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Totalité du membre:</td>
</tr>
<tr>
<td>* Maladie amniotique</td>
</tr>
<tr>
<td>* doigts à ressaut</td>
</tr>
</tbody>
</table>

3) DYSPLASIES

<table>
<thead>
<tr>
<th>a. Tumeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Vasculaire:</td>
</tr>
<tr>
<td>* macrodactylie</td>
</tr>
<tr>
<td>* muscles de la main aberrants</td>
</tr>
</tbody>
</table>

4) SYNDROMES

Epidemiology

• Incidence = 1 in 2000 to 3000 live births
• One of the most common congenital hand deformities
• 2/1 ratios in favor of males and of the Caucasian population
• 10% to 40% of patients have a family history of previous similar malformations
Epidemiology

• In isolated syndactyly:
 • both hands are involved in 50% of cases
 • The 3rd (50%) and 4th interdigital (30%) spaces are the most commonly affected

• In syndromic syndactyly: the 1st and 2nd web spaces are relatively more frequently involved

General examination

Assess:
• The whole affected limb and:
• Other limbs
• Chest wall
• Craniofacial areas
 → syndromic concomitant malformations
 (Poland, Apert’s syndrome...)
 → genetic counseling
Classification

• Complete or incomplete

• Simple, complex and complicated

Indications of surgery

- **Surgical management is indicated in most cases**
- Surgery is not indicated in complex cases without sufficient osteo-articular tissues to provide stable and mobile independent digits, since separation may worsen hand function

Timing of surgery

• Remains controversial

• Surgical program should end before three years of age

• Syndactyly between rays of different lengths induces angular deformities of the longer digit
 • Result in fixed camptodactyly and/or clinodactyly
 • 1^{st}, 2^{nd} and 4^{th} interdigital spaces = before one year
 • 3^{rd} interdigital space = between 12 and 18 months

Timing of surgery

• Most authors advocate **staged separation surgeries when a finger is webbed on both sides**

• Syndactyly of all interdigital spaces will need two procedures:
 • first release of the first and third webs
 • and 3 to 6 months later the release of the second and fourth webs

Timing of surgery

• Some authors recently reported on single-staged release of all fingers
• Using dorsal gull-wing flaps
• Preoperative CT angiography to demonstrated at least one digital artery in all fingers

→ All were simple syndactyly

Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Patient’s setup

- Ambulatory surgery
- General anesthesia
- Sterile tourniquet for access to the arm and elbow for skin graft harvest if necessary
- Optical magnification
- Anatomical landmarks using a skin-marker pencil:
 - metacarpal heads
 - longitudinal midlines of each digit
 - relation between dorsal and palmar flaps
- Measurements of proximal thickness of the conjoined digit
Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Comissure reconstruction

Use of skin flaps is widely accepted

Second, third and fourth normal web spaces present with a 45° dorso-palmar slope

Commissure reconstruction: Incomplete syndactyly

- Three-flaps web plasties: Several designs have proposed over the years (MOSS 1990; OSTROWSKI 1991 BANDOH 1997...).
- If webbing is proximal to the proximal phalanx distal epiphysis: island flap and translate it proximally as in “V-Y”-plasty.

![Diagram showing three-flaps and island flaps for commissure reconstruction](image-url)
Ostrowski’s plasty

Commissure reconstruction: Complete syndactyly

Dorsal flaps

Palmar flaps

Combined dorsal and palmar flaps
Commissure reconstruction

• **Proximally-based dorsal flap** is the most commonly used technique
 • Starting proximally at the level of the metacarpal heads
 • Flap length is equal to the antero-posterior thickness of conjoined digits
 • About 1/2 ratio
 • Anastomosis digital artery and dorsal intermetacarpal artery
Dorsal flaps: Numerous shapes (pentagonal, hexagonal, bilobed, double wing-shaped, seagull wing–shaped...)

Proximally-based flaps

Island flaps

Commissure reconstruction

• Proximally-based dorsal flap: Numerous variations have been proposed:
 • hourglass flaps (GLICENSTEIN 1998, MALLET 2013)
 • trapezoid flaps (VEKRIS 2010)

Commissure reconstruction

- Proximally-based dorsal flap: Numerous variations have been proposed:
 - Dorsal omega flaps (DARCANGELO 1996) with palmar anchor

Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Digital separation

- Matched or non matched broken-line incisions to elevate palmar and dorsal laterally-based interdigitating flaps
 - Avoid retractile scar formation
 - Avoid web creep
- Anticipate coverage of zone of interest (i.e., exposed bone or joint)

Digital separation

• Precautious dissection
 • from distal to proximal
 • from dorsal to palmar

• Release all fibrous connections

• Identify the neurovascular structures
 • If the division of the common interdigital artery is too distal, one of the two branches may be ligated
Digital separation

• Identify the neurovascular structures
 • provided that the contralateral digital artery is known to be intact
 • clamping test ++
 • Nerve: intraneural dissection
• Once all flaps are positioned tourniquet is released for hemostasis before grafting
Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Resurfacing - Controversy: with or without skin graft?

Most of the recent studies described satisfactory results with graftless procedures:

- Reduce operating time
- No donor site morbidity

Resurfacing is achieved through flap positioning and defatting, as well as leaving open the residual defects.

Resurfacing: Controversy with or without skin graft?

- Recent prospective comparative study or retrospective comparative study = advantages in appearance and web creep in the group with skin graft

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Journal</th>
<th>Number of syndactylies</th>
<th>Skin graft</th>
<th>Mean follow-up Years)</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landi</td>
<td>2014</td>
<td>JHS Eur</td>
<td>26</td>
<td>Hyalomatrix</td>
<td>2</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Ni</td>
<td>2015</td>
<td>JHS Am</td>
<td>116</td>
<td>No</td>
<td>4.2</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Duteille</td>
<td>2016</td>
<td>JHS Eur</td>
<td>40</td>
<td>Matriderm</td>
<td></td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Widerberg</td>
<td>2016</td>
<td>JHS Eur</td>
<td>29</td>
<td>No</td>
<td>16</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Sullivan</td>
<td>2017</td>
<td>JHS Am</td>
<td>Systematic review : 34 articles</td>
<td>Comparative graft/no graft</td>
<td>N/A</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Tian</td>
<td>2017</td>
<td>JHS Am</td>
<td>74</td>
<td>No graft in 21 out of 31 patients</td>
<td>1</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Dong</td>
<td>2017</td>
<td>Medicine (Baltimore)</td>
<td>35</td>
<td>No</td>
<td>4.6</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Yuan</td>
<td>2018</td>
<td>PRS</td>
<td>45</td>
<td>Comparative graft/no graft</td>
<td>Therapeutic III</td>
<td></td>
</tr>
<tr>
<td>Ferrari</td>
<td>2019</td>
<td>JHS Eur</td>
<td>49</td>
<td>Comparative graft/no graft</td>
<td>7.4</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Wang</td>
<td>2019</td>
<td>JHS Am</td>
<td>22</td>
<td>No</td>
<td>1 to 2</td>
<td>Therapeutic IV</td>
</tr>
<tr>
<td>Wang</td>
<td>2019</td>
<td>JHS Eur</td>
<td>28</td>
<td>Comparative graft/no graft</td>
<td>4.3</td>
<td>Therapeutic II</td>
</tr>
</tbody>
</table>

Failed graftless with Hyalomatrix
Donor site

• Full-thickness grafts:
 • Anterior Elbow crease
 • Wrist flexor crease
 • Medial part of the arm
 • Groin area
 • Retroauricular area
 • Abdomen...

→ Should match skin color

Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Paronychial reconstruction

- Complex syndactyly
 - fused phalangeal tufts
 - bony elements are exposed at the end of the release

- Pulp flaps:
 - 1: buck gramcko
 - 2: sugihara
 - 3: lundkvist
Paronychial reconstruction

Two laterally-based long and narrow triangular flaps
Principles of surgery

1. Patient’s setup
2. Commissure reconstruction
3. Digital separation
4. Resurfacing
5. Paronychial reconstruction
6. Post-op care
Post op care

- Surgical wounds are closed without tension using 5.0 absorbable sutures
- The newly separated web space is maintained as opened as possible without compromising flap and/or digit vascularization
 - Most authors recommend to use only gauze to open to web space
- First dressing change is made 7 to 21 days after surgery

Post op care

• In complicated syndactyly, the newly separated web space can be maintained opened with an external fixator when needed.
Specific situations
Specific situations: First web space syndactyly

• Mild syndactyly:
 • “Z”-plasty
 • Four-flaps “Z”-plasty ++
• Dorsal advancement rotation flap
• Preliminary tissue expansion on the dorsum of the hand
• Transposition flap from the radial border of the index
• Severe contracture = free groin, forearm or lateral arm flap
First web space syndactyly: large advancement-rotation flap raised from the dorsum of the hand

Ghani HA. Modified dorsal rotation advancement flap for release of the thumb web space. J Hand Surg Br 2006;31:226-9
Complicated syndactyly
Polysyndactyly

• Can be associated with:
 • Clinodactyly
 • Brachydactyly
 • Symphalangism
 • Synostosis

• Ultrasound or magnetic resonance imaging may precise the tendon and neurovascular anatomies

• Problem with IP stiffness, joint instability, flexors/extensors tendon insertions....

Syndromes
Apert’s syndrome

- Autosomic dominant and mutations
 - Mutation of the fibroblast growth factor receptor type 2 gene (FGFR2)
- Severe complex syndactyly of the hands and feet
 - Complex syndactyly of the index, long, and ring fingers
 - Simple syndactyly between the ring and small finger
 - Incomplete first web space syndactyly
 - Radial clinodactyly of the thumb
- Abnormalities of the shoulder and elbow
- Craniostenosis, Mid facial hypoplasia, Hypertelorism
Apert’s Syndrome

• The goal of surgery is to complete separation of the digits and correct the thumb deformity before 2 years of age
 • preop soft tissue expansion (Lohmeyer)
• Reconstruction of an adequate first web space = first priority
• Thumb clinodactyly = corrective osteotomy (opening wedge)
• Release of the fourth and fifth metacarpal synostosis between the ages of 4 and 6 years

Poland’s Syndrome

- Attributed to disruption of the blood flow in the subclavian artery in the embryo
- Sternocostal head of pectoralis major agenesis
- Brachymésophalangy or une symbrachydactyly
 - Always unilateral
 - Smaller hand
 - Stiff fingers
 - Clinodactyly
Poland’s Syndrome

• Associated anomalies:
 • Hypoplasia of breast
 • Costal hypoplasia
 • Lung hernia
 • Scapula hypoplasia
 • Short axillary fold
 • Radioulnar synostosis
Complications
Complications

- Digital ischemia
- Flap necrosis
- Graft loss
- Wound dehiscence
- Delayed healing
- Superficial surgical site infections (most common)

→ about 2% of cases

Complications

- Web creep = distal translation of the commissure
- Palmar scar contractures with growth-related frontal and/or sagittal angulations
- Joint motion limitation
- Nail dystrophy
- Keloid formation
→ complexity of the malformation++

Complications: Web-creep

<table>
<thead>
<tr>
<th>Flexion-extension deformity</th>
<th>Normal digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal digit</td>
</tr>
<tr>
<td>1</td>
<td>Finger can not be hyperextended</td>
</tr>
<tr>
<td>2</td>
<td>Reductible flexion deformity</td>
</tr>
<tr>
<td>3</td>
<td>Fixed finger deformity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Web-creep</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Soft web. Abduction mirrors the adjacent web or equivalent controlateral web</td>
</tr>
<tr>
<td>1</td>
<td>No web advancement but thickening of the web with reduced span</td>
</tr>
<tr>
<td>2</td>
<td>Creep of web to 1/3 of the distance between base of the web and PIPJ crease</td>
</tr>
<tr>
<td>3</td>
<td>Creep of web to 2/3 of the distance between base of the web and PIPJ crease</td>
</tr>
<tr>
<td>4</td>
<td>Creep of web to the PIPJ crease</td>
</tr>
</tbody>
</table>

Palmar scar contracture and web creep
Results

- Dorsal Omega flap
- Palmar anchor
- Skin graft

Conclusion

• One of the most common deformity of the hand congenital deformity
• Initial examination must focus on the determining the syndromic or isolated
• Numerous techniques have been described
 • very little comparative data exists
• The physician has the choice regarding the technique to use
• Outcomes are most commonly satisfactory, provided that the syndactyly is simple and that basic operating rules are followed
Thank You

Thanks to Adeline Cambon-Binder for the drawings